Multimodal Contextual Precision
The multimodal contextual precision metric measures your RAG pipeline's retriever by evaluating whether nodes in your retrieval_context
that are relevant to the given input
are ranked higher than irrelevant ones. deepeval
's multimodal contextual precision metric is a self-explaining MLLM-Eval, meaning it outputs a reason for its metric score.
The Multimodal Contextual Precision is the multimodal adaptation of DeepEval's contextual precision metric. It accepts images in addition to text for the input
, retrieval_context
, and expected_output
.
Required Arguments
To use the MultimodalContextualPrecisionMetric
, you'll have to provide the following arguments when creating a MLLMTestCase
:
input
actual_output
expected_output
retrieval_context
The input
and actual_output
are required to create an MLLMTestCase
(and hence required by all metrics) even though they might not be used for metric calculation. Read the How Is It Calculated section below to learn more.
Example
from deepeval import evaluate
from deepeval.metrics import MultimodalContextualPrecisionMetric
from deepeval.test_case import MLLMTestCase, MLLMImage
metric = MultimodalContextualPrecisionMetric()
test_case = MLLMTestCase(
input=["Tell me about some landmarks in France"],
actual_output=[
"France is home to iconic landmarks like the Eiffel Tower in Paris.",
MLLMImage(...)
],
expected_output=[
"The Eiffel Tower is located in Paris, France.",
MLLMImage(...)
],
retrieval_context=[
MLLMImage(...),
"The Eiffel Tower is a wrought-iron lattice tower built in the late 19th century.",
MLLMImage(...)
],
)
metric.measure(test_case)
print(metric.score)
print(metric.reason)
# or evaluate test cases in bulk
evaluate([test_case], [metric])
There are SIX optional parameters when creating a MultimodalContextualPrecisionMetric
:
- [Optional]
threshold
: a float representing the minimum passing threshold, defaulted to 0.5. - [Optional]
model
: a string specifying which of OpenAI's Multimodal GPT models to use, OR any custom MLLM model of typeDeepEvalBaseMLLM
. Defaulted to 'gpt-4o'. - [Optional]
include_reason
: a boolean which when set toTrue
, will include a reason for its evaluation score. Defaulted toTrue
. - [Optional]
strict_mode
: a boolean which when set toTrue
, enforces a binary metric score: 1 for perfection, 0 otherwise. It also overrides the current threshold and sets it to 1. Defaulted toFalse
. - [Optional]
async_mode
: a boolean which when set toTrue
, enables concurrent execution within themeasure()
method. Defaulted toTrue
. - [Optional]
verbose_mode
: a boolean which when set toTrue
, prints the intermediate steps used to calculate said metric to the console, as outlined in the How Is It Calculated section. Defaulted toFalse
.
How Is It Calculated?
The MultimodalContextualPrecisionMetric
score is calculated according to the following equation:
- k is the (i+1)th node in the
retrieval_context
- n is the length of the
retrieval_context
- rk is the binary relevance for the kth node in the
retrieval_context
. rk = 1 for nodes that are relevant, 0 if not.
The MultimodalContextualPrecisionMetric
first uses an MLLM to determine for each node in the retrieval_context
whether it is relevant to the input
based on information in the expected_output
, before calculating the weighted cumulative precision as the contextual precision score. The weighted cumulative precision (WCP) is used because it:
- Emphasizes on Top Results: WCP places a stronger emphasis on the relevance of top-ranked results. This emphasis is important because MLLMs tend to give more attention to earlier nodes in the
retrieval_context
(which may cause downstream hallucination if nodes are ranked incorrectly). - Rewards Relevant Ordering: WCP can handle varying degrees of relevance (e.g., "highly relevant", "somewhat relevant", "not relevant"). This is in contrast to metrics like precision, which treats all retrieved nodes as equally important.
A higher multimodal contextual precision score represents a greater ability of the retrieval system to correctly rank relevant nodes higher in the retrieval_context
.